
Scientific
So�ware

Development:
A Pragmatic

Approach

Blaise Thompson

Introduction

File Format

Version Control

Modularity

Collaboration

Optimization

Publish

yaq

Scientific So�ware Development:
A Pragmatic Approach

Blaise Thompson

University of Wisconsin–Madison

2020-05-07

Scientific
So�ware

Development:
A Pragmatic

Approach

Blaise Thompson

Introduction

File Format

Version Control

Modularity

Collaboration

Optimization

Publish

yaq

UW-Madison Chemistry

Chemistry at a glance:
∼ 50 Faculty
∼ 350 Grad. Students
∼ 40 Postdocs
∼ 100 Sta�

Scientific
So�ware

Development:
A Pragmatic

Approach

Blaise Thompson

Introduction

File Format

Version Control

Modularity

Collaboration

Optimization

Publish

yaq

Chemistry Shops

Glass Machine Electronics

Scientific
So�ware

Development:
A Pragmatic

Approach

Blaise Thompson

Introduction

File Format

Version Control

Modularity

Collaboration

Optimization

Publish

yaq

Blaise Thompson

Who am I?
I Ph.D. Analytical Chemist, 2018 (John C. Wright Group)
I Currently: Instrumentation Technologist

I design circuits, construct instruments
I manage shop tools and inventory
I advise and help researchers
I so�ware

I No formal training in so�ware development
I Lover of the Python programming language

Scientific
So�ware

Development:
A Pragmatic

Approach

Blaise Thompson

Introduction

File Format

Version Control

Modularity

Collaboration

Optimization

Publish

yaq

Scientific So�ware

Scientists use and develop so�ware for many reasons
I data processing
I driving instrumentation
I modeling

Scientific so�ware projects have a range of scales
I one-o� script
I small tool
I large multi-year project

Scientific
So�ware

Development:
A Pragmatic

Approach

Blaise Thompson

Introduction

File Format

Version Control

Modularity

Collaboration

Optimization

Publish

yaq

Scientific So�ware

We are not so�ware developers!
... but somebody has to make the so�ware ...

There are special challenges in scientific so�ware development:
I end-user developers1,2,3

I shi�ing goals1,2,4,5

I maintenance4,5

I lack of testing3,5

I struggles with optimization5

1. Segal. “When So�ware Engineers Met Research Scientists: A Case Study”. In: Empirical So�ware Engineering 10.4 (Oct. 2005), pp. 517–536.
2. Hannay, MacLeod, Singer, Langtangen, Pfahl, Wilson. “How do scientists develop and use scientific so�ware?” In: 2009 ICSE Workshop
3. Joppa, McInerny, Harper, Salido, Takeda et al. “Troubling Trends in Scientific So�ware Use”. In: Science 340.6134 (May 2013), pp. 814–815.
4. Carver, Kendall, Squires, Post. “So�ware Development Environments...: A Series of Case Studies”. In: 2007 ICSE Workshop
5. Prabhu, Zhang, Ghosh, August, Huang et al. “A survey of the practice of computational science”. In: SC ’11. ACM Press, 2011.

Scientific
So�ware

Development:
A Pragmatic

Approach

Blaise Thompson

Introduction

File Format

Version Control

Modularity

Collaboration

Optimization

Publish

yaq

Scientific So�ware

...so�ware is profoundly bri�le: “small”
bugs commonly have unbounded error
propagation. ...it is rare that a so�ware
bug would alter a small proportion of the
data by a small amount. More likely, it
systematically alters every data point, or
occurs in some downstream aggregate
step with e�ectively global
consequences. In general, so�ware
errors produce outcomes that are
inaccurate, not merely imprecise.

Open Peer Review

Any reports and responses or comments on the
article can be found at the end of the article.

OPINION ARTICLE

 Rampant software errors may undermine scientific results
[version 2; peer review: 2 approved]
David A. W. Soergel1,2

Department of Computer Science, University of Massachusetts Amherst, Amherst, USA
Current address: Google, Inc., Mountain View, CA, USA

Abstract
The opportunities for both subtle and profound errors in software and data
management are boundless, yet they remain surprisingly underappreciated.
Here I estimate that any reported scientific result could very well be wrong if
data have passed through a computer, and that these errors may remain
largely undetected. It is therefore necessary to greatly expand our efforts to
validate scientific software and computed results.

Keywords
data management, software error

 David A. W. Soergel ()Corresponding author: david@davidsoergel.com
 No competing interests were disclosed.Competing interests:

 The author(s) declared that no grants were involved in supporting this work.Grant information:
 © 2015 Soergel DAW. This is an open access article distributed under the terms of the , whichCopyright: Creative Commons Attribution Licence

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 Soergel DAW. How to cite this article: Rampant software errors may undermine scientific results [version 2; peer review: 2 approved]

F1000Research 2015, :303 ()3 https://doi.org/10.12688/f1000research.5930.2
 11 Dec 2014, :303 () First published: 3 https://doi.org/10.12688/f1000research.5930.1

1,2

1

2

 Reviewer Status

 Invited Reviewers

version 2
published
29 Jul 2015

version 1
published
11 Dec 2014

 1 2

report

report

report

report

, Michigan State University,Titus Brown

East Lansing, USA
1

, University of Chicago,Daniel S. Katz

Chicago, USA
2

 11 Dec 2014, :303 (First published: 3
)https://doi.org/10.12688/f1000research.5930.1

 29 Jul 2015, :303 (Latest published: 3
)https://doi.org/10.12688/f1000research.5930.2

v2

Page 1 of 14

F1000Research 2015, 3:303 Last updated: 16 MAY 2019

Scientific
So�ware

Development:
A Pragmatic

Approach

Blaise Thompson

Introduction

File Format

Version Control

Modularity

Collaboration

Optimization

Publish

yaq

Scientific So�ware

Unlike traditional commercial so�ware
developers, but very much like
developers in open source projects or
startups, scientific programmers usually
don’t get their requirements from
customers, and their requirements are
rarely frozen. In fact, scientists o�en
can’t know what their programs should
do next until the current version has
produced some results.

When Software Engineers Met Research Scientists:
A Case Study

JUDITH SEGAL j.a.segal@open.ac.uk

Department of Computing, Faculty of Mathematics and Computing, The Open University, Milton Keynes,

MK7 6AA, UK

Editor: Marvin Zelkowitz

Abstract. This paper describes a case study of software engineers developing a library of software components

for a group of research scientists, using a traditional, staged, document-led methodology. The case study reveals

two problems with the use of the methodology. The first is that it demands an upfront articulation of require-

ments, whereas the scientists had experience, and hence expectations, of emergent requirements; the second is

that the project documentation does not suffice to construct a shared understanding. Reflecting on our case

study, we discuss whether combining agile elements with a traditional methodology might have alleviated these

problems. We then argue that the rich picture painted by the case study, and the reflections on methodology that

it inspires, has a relevance that reaches beyond the original context of the study.

Keywords: Case study, software engineers, scientific software, agile methodologies, tailoring methodologies.

1. Introduction

This paper describes a case study in which software engineers followed a traditional

staged document-led methodology in order to develop a library of instrument-driving

software components for a group of research scientists. Two problems with the devel-

opment are revealed. The first is concerned with requirements: the research scientists

are experienced in developing their own software in the laboratory in a highly iterative

manner, and having requirements emerge in succeeding iterations. They thus did not

appreciate the need to articulate requirements fully and upfront as demanded by a staged

methodology, and found this articulation very difficult to do. The second is a problem

of communications: using contractual documents (requirement and specification docu-

ments) together with formal minuted meetings, did not suffice to construct a fully shared

understanding between the scientists and the software engineers.

Case studies can sometimes be viewed with suspicion in the academic empirical

software engineering community. Glass et al. (2002), in their review of published research

in software engineering, express surprise at the paucity of field/case studies therein.

Although Glass et al. did not include the journal of Empirical Software Engineering in

their review, a taxonomy of this journal’s publications (Segal et al., 2005), paints a

similar picture. But we argue in Segal (2004) and Robinson et al. (2003) that case studies

are essential if we are to understand the actual practice (as opposed to the theory) of

software development, and that such understanding is an essential prerequisite to the

primary aim of empirical software engineering, which is to inform practice.

Empirical Software Engineering, 10, 517–536, 2005.
2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Scientific
So�ware

Development:
A Pragmatic

Approach

Blaise Thompson

Introduction

File Format

Version Control

Modularity

Collaboration

Optimization

Publish

yaq

Practices

PERSPECTIVE

Good enough practices in scientific computing

Greg Wilson1☯*, Jennifer Bryan2☯, Karen Cranston3☯, Justin Kitzes4☯, Lex Nederbragt5☯,

Tracy K. Teal6☯

1 Software Carpentry Foundation, Austin, Texas, United States of America, 2 RStudio and Department of

Statistics, University of British Columbia, Vancouver, British Columbia, Canada, 3 Department of Biology,

Duke University, Durham, North Carolina, United States of America, 4 Energy and Resources Group,

University of California, Berkeley, Berkeley, California, United States of America, 5 Centre for Ecological and

Evolutionary Synthesis, University of Oslo, Oslo, Norway, 6 Data Carpentry, Davis, California, United States

of America

☯ These authors contributed equally to this work.

* gvwilson@software-carpentry.org

Author summary

Computers are now essential in all branches of science, but most researchers are never

taught the equivalent of basic lab skills for research computing. As a result, data can get

lost, analyses can take much longer than necessary, and researchers are limited in how

effectively they can work with software and data. Computing workflows need to follow

the same practices as lab projects and notebooks, with organized data, documented steps,

and the project structured for reproducibility, but researchers new to computing often

don’t know where to start. This paper presents a set of good computing practices that

every researcher can adopt, regardless of their current level of computational skill. These

practices, which encompass data management, programming, collaborating with col-

leagues, organizing projects, tracking work, and writing manuscripts, are drawn from a

wide variety of published sources from our daily lives and from our work with volunteer

organizations that have delivered workshops to over 11,000 people since 2010.

Overview

We present a set of computing tools and techniques that every researcher can and should con-

sider adopting. These recommendations synthesize inspiration from our own work, from the

experiences of the thousands of people who have taken part in Software Carpentry and Data

Carpentry workshops over the past 6 years, and from a variety of other guides. Our recom-

mendations are aimed specifically at people who are new to research computing.

Introduction

Three years ago, a group of researchers involved in Software Carpentry and Data Carpentry

wrote a paper called "Best Practices for Scientific Computing" [1]. That paper provided recom-

mendations for people who were already doing significant amounts of computation in their

research. However, as computing has become an essential part of science for all researchers,

there is a larger group of people new to scientific computing, and the question then becomes,

"where to start?"

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005510 June 22, 2017 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Wilson G, Bryan J, Cranston K, Kitzes J,

Nederbragt L, Teal TK (2017) Good enough

practices in scientific computing. PLoS Comput

Biol 13(6): e1005510. https://doi.org/10.1371/

journal.pcbi.1005510

Editor: Francis Ouellette, Ontario Institute for

Cancer Research, CANADA

Published: June 22, 2017

Copyright: © 2017 Wilson et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Funding: The authors received no specific funding

for this work.

Competing interests: The authors have declared

that no competing interests exist.

Scientific
So�ware

Development:
A Pragmatic

Approach

Blaise Thompson

Introduction

File Format

Version Control

Modularity

Collaboration

Optimization

Publish

yaq

File Format

Choose good file formats!

Start your project by designing your file formats.
I data files
I logs
I configuration files

Use existing file formats where possible.

Prioritize human readability.

Include as much metadata as possible.

Scientific
So�ware

Development:
A Pragmatic

Approach

Blaise Thompson

Introduction

File Format

Version Control

Modularity

Collaboration

Optimization

Publish

yaq

File Format

Scientific
So�ware

Development:
A Pragmatic

Approach

Blaise Thompson

Introduction

File Format

Version Control

Modularity

Collaboration

Optimization

Publish

yaq

File Format

Scientific
So�ware

Development:
A Pragmatic

Approach

Blaise Thompson

Introduction

File Format

Version Control

Modularity

Collaboration

Optimization

Publish

yaq

File Format

File format tips!
I Storing very complex multidimensional data? Consider HDF5.
I Tab characters work best as delimiters.
I TOML and INI are cool.

Scientific
So�ware

Development:
A Pragmatic

Approach

Blaise Thompson

Introduction

File Format

Version Control

Modularity

Collaboration

Optimization

Publish

yaq

Version Control

Use version control! (probably git)

So�ware developers use version control to
keep track of all of their code changes.

Using version control, you can always return to
an earlier version—nothing is lost.

In many cases, the version control system is
also the source code backup.

“Not Final” by Jorge Cham - www.phdcomics.com

www.phdcomics.com

Scientific
So�ware

Development:
A Pragmatic

Approach

Blaise Thompson

Introduction

File Format

Version Control

Modularity

Collaboration

Optimization

Publish

yaq

Version Control

https://git-scm.com/

https://github.com/

https://gitlab.com/

Git is the ubiquitous version control system.
I everything is local
I track arbitrary files and folders
I several server options available

I backup
I sharing

I can be private if desired

If you do decide to share your code with the
world, please consider licensing it.

shops.chem.wisc.edu/training/

https://git-scm.com/
https://github.com/
https://gitlab.com/
shops.chem.wisc.edu/training/

Scientific
So�ware

Development:
A Pragmatic

Approach

Blaise Thompson

Introduction

File Format

Version Control

Modularity

Collaboration

Optimization

Publish

yaq

Version Control

Katie uses Gaussian computational so�ware in her research. She is exploring a
large range of initial conditions using a grid search strategy. Katie uses Git to
manage a collection of three or four scripts that she uses to run her simulations
and process resulting data. Katie uses the departmental GitLab instance to store
her scripts in a private repository. Even though she is the only student working on
the project right now, Katie benefits from the version control and backup features
as she continues to tweak her script. Katie appreciates the assurance that she can
always go back to an earlier version.

Scientific
So�ware

Development:
A Pragmatic

Approach

Blaise Thompson

Introduction

File Format

Version Control

Modularity

Collaboration

Optimization

Publish

yaq

Version Control

Louis uses several custom instruments in his daily
research. Each of these is a typical analytical/physical
chemistry instrument with many components and a large
LabVIEW so�ware stack originally wri�en by a
long-since-graduated student. Many people rely on these
instruments, so it is crucial that their functionality is not
interrupted even as Louis improves the so�ware. Louis
uses Git to store working versions of the existing
LabVIEW code. He then feels confident that he can make
edits and improvements without “losing” the old
functionality. While he irons out bugs, Louis makes sure
that he reverts to the original code so that other users are
not interrupted. Louis backs-up the LabVIEW so�ware
on the departmental GitLab instance, using a “Group” to
ensure that his labmates and advisor also have access.

Image adapted from “Pro Git” by Sco� Chacon and Ben Straub

Scientific
So�ware

Development:
A Pragmatic

Approach

Blaise Thompson

Introduction

File Format

Version Control

Modularity

Collaboration

Optimization

Publish

yaq

Version Control

The Wright Group’s research requires them to process large, complex, &
multidimensional datasets. In pursuit of this goal, several graduate students spend
a significant amount of their time developing a custom data processing library in
Python. Due to the scale of this development e�ort and the number of graduate
students working simultaneously on the project, the Wright Group decides to use
a branching and pull request workflow to help everyone collaborate. The Wright
Group decides to host their code on GitHub, making it publicly available in the
hope that other scientists might benefit from and contribute to the library.

Scientific
So�ware

Development:
A Pragmatic

Approach

Blaise Thompson

Introduction

File Format

Version Control

Modularity

Collaboration

Optimization

Publish

yaq

Modularity

Where possible, try to keep so�ware projects small and single purpose.

Focus on interoperability.
I import your other packages
I shared file formats

Scientific
So�ware

Development:
A Pragmatic

Approach

Blaise Thompson

Introduction

File Format

Version Control

Modularity

Collaboration

Optimization

Publish

yaq

Modularity

Scientific
So�ware

Development:
A Pragmatic

Approach

Blaise Thompson

Introduction

File Format

Version Control

Modularity

Collaboration

Optimization

Publish

yaq

Modularity

So�ware projects can be “finished”.

Scientific
So�ware

Development:
A Pragmatic

Approach

Blaise Thompson

Introduction

File Format

Version Control

Modularity

Collaboration

Optimization

Publish

yaq

Modularity

To help keep di�erent modules interoperable, use tests.

Try to write many small tests that can be run automatically
I when you add a feature
I when you find a bug

Git servers like GitLab and GitHub can automatically run tests for you!

Scientific
So�ware

Development:
A Pragmatic

Approach

Blaise Thompson

Introduction

File Format

Version Control

Modularity

Collaboration

Optimization

Publish

yaq

Collaboration

Start by looking for existing projects.

Familiarize yourself with the ecosystem before jumping in.

Don’t “reinvent the wheel”.

Scientific
So�ware

Development:
A Pragmatic

Approach

Blaise Thompson

Introduction

File Format

Version Control

Modularity

Collaboration

Optimization

Publish

yaq

Collaboration

data processing
I yt
I sunpy
I nmrglue
I KOALA
I PyTA
I scikit.ultrafast
I spc
I sncosmo
I scikit-beam

data acquisition
I Exopy
I bluesky
I Instrbuilder
I Lantz
I �di
I storm-control
I SFGacquisition
I thorpy
I PyDAQmx

simulation
I COSMOSS
I AutoGAMESS
I pymatgen
I KinetiKit
I CP2K
I GoodVibes
I cctbx
I ChemPy
I phonopy

Scientific
So�ware

Development:
A Pragmatic

Approach

Blaise Thompson

Introduction

File Format

Version Control

Modularity

Collaboration

Optimization

Publish

yaq

Collaboration

What if existing projects don’t work for you?

Work within small groups
I find common repetitive tasks
I try to “divide and conquer” and share code
I use code review

Scientific
So�ware

Development:
A Pragmatic

Approach

Blaise Thompson

Introduction

File Format

Version Control

Modularity

Collaboration

Optimization

Publish

yaq

Optimization

Optimization (making so�ware faster) ma�ers, but avoid premature optimization.

Don’t get pulled into the trap of trying to make things perfect the first time.
So�ware design is typically a very iterative process, and for good reason. This is
particularly true in a scientific context, where goals may evolve during the
development process. Write for correctness first, and if it works and is proven
useful, consider optimization.

Never optimize blindly—use profiling tools.

Scientific
So�ware

Development:
A Pragmatic

Approach

Blaise Thompson

Introduction

File Format

Version Control

Modularity

Collaboration

Optimization

Publish

yaq

Optimization

PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018) 77

WrightSim: Using PyCUDA to Simulate
Multidimensional Spectra

Kyle F Sunden‡∗, Blaise J Thompson‡, John C Wright‡

F

Abstract—Nonlinear multidimensional spectroscopy (MDS) is a powerful ex-
perimental technique used to interrogate complex chemical systems. MDS
promises to reveal energetics, dynamics, and coupling features of and between
the many quantum-mechanical states that these systems contain. In practice,
simulation is typically required to connect measured MDS spectra with these
microscopic physical phenomena. We present an open-source Python package,
WrightSim, designed to simulate MDS. Numerical integration is used to
evolve the system as it interacts with several electric fields in the course of a
multidimensional experiment. This numerical approach allows WrightSim to
fully account for finite pulse effects that are commonly ignored. WrightSim
is made up of modules that can be exchanged to accommodate many different
experimental setups. Simulations are defined through a Python interface that is
designed to be intuitive for experimentalists and theorists alike. We report sev-
eral algorithmic improvements that make WrightSim faster than previous im-
plementations. We demonstrated the effect of parallelizing the simulation, both
with CPU multiprocessing and GPU (CUDA) multithreading. Taken together,
algorithmic improvements and parallelization have made WrightSim multi-
ple orders of magnitude faster than previous implementations. WrightSim
represents a large step towards the goal of a fast, accurate, and easy to use
general purpose simulation package for multidimensional spectroscopy. To our
knowledge, WrightSim is the first openly licensed software package for these
kinds of simulations. Potential further improvements are discussed.

Index Terms—Simulation, spectroscopy, PyCUDA, numerical integration,
Quantum Mechanics, multidimensional

Introduction

Nonlinear multidimensional spectroscopy (MDS) is an increas-
ingly important analytical technique for the analysis of complex
chemical material systems. MDS can directly observe fundamental
physics that are not possible to record in any other way. With
recent advancements in lasers and optics, MDS experiments are
becoming routine. Applications of MDS in semiconductor pho-
tophysics [CTK+15], medicine [FGG+09], and other domains
[PLMZ18] are currently being developed. Ultimately, MDS may
become a key research tool akin to multidimensional nuclear
magnetic resonance spectroscopy. [PRK+09]

A generic MDS experiment involves exciting a sample with
multiple pulses of light and measuring the magnitude of the
sample response (the signal). The dependence of this signal on
the properties of the excitation pulses (frequency, delay, fluence,

* Corresponding author: sunden@wisc.edu
‡ University of Wisconsin--Madison

Copyright © 2018 Kyle F Sunden et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

Fig. 1: Simulated spectrum at normalized coordinates

polarization etc.) contains information about the microscopic
physics of the material. However, this information cannot be
directly "read off" of the spectrum. Instead, MDS practitioners
typically compare the measured spectrum with model spectra.
A quantitative microscopic model is developed based on this
comparison between experiment and theory. Here, we focus on this
crucial modeling step. We present a general-purpose simulation
package for MDS: WrightSim1.

Figure 1 is a visualization of a spectrum in 2-dimensional
frequency-frequency space. The axes are two different frequencies
for two separate input electric fields. The system that we have
chosen for this simulation is very simple, with a single resonance.
The axes are translated such that there is a resonance around
0.0 in both frequencies. This two-dimensional simulation is rep-
resentative of WrightSim’s ability to traverse through many
aspects of experimental space. Every conceivable pulse parameter
(delay, fluence, frequency, chirp etc.) can become an axis in the

1. Source code available at https://github.com/wright-group/WrightSim, re-
leased under MIT License.

Scientific
So�ware

Development:
A Pragmatic

Approach

Blaise Thompson

Introduction

File Format

Version Control

Modularity

Collaboration

Optimization

Publish

yaq

Optimization

Scientific
So�ware

Development:
A Pragmatic

Approach

Blaise Thompson

Introduction

File Format

Version Control

Modularity

Collaboration

Optimization

Publish

yaq

Optimization

Scientific
So�ware

Development:
A Pragmatic

Approach

Blaise Thompson

Introduction

File Format

Version Control

Modularity

Collaboration

Optimization

Publish

yaq

Publish

Publish your scientific so�ware!
I Receive academic credit for your work.
I Communicate about your so�ware to other scientists.
I Provide a citation target.
I Increase reproducability and decrease e�ort in your community.

Scientific
So�ware

Development:
A Pragmatic

Approach

Blaise Thompson

Introduction

File Format

Version Control

Modularity

Collaboration

Optimization

Publish

yaq

Publish

Distribute your code using standard package managers
I Python Package Index “PyPI”
I MATLAB File Exchange
I The Comprehensive R Archive Network “CRAN”
I VI Package Manager “VIPM”
I Anaconda (multilingual)

Scientific
So�ware

Development:
A Pragmatic

Approach

Blaise Thompson

Introduction

File Format

Version Control

Modularity

Collaboration

Optimization

Publish

yaq

Publish

Many Journals:
I Journal of Open Source So�ware
I Jounral of Open Research So�ware
I HardwareX
I So�wareX
I Review of Scientific Instruments

Scientific
So�ware

Development:
A Pragmatic

Approach

Blaise Thompson

Introduction

File Format

Version Control

Modularity

Collaboration

Optimization

Publish

yaq

Publish

REVIEW OF SCIENTIFIC INSTRUMENTS 85, 064104 (2014)

KOALA: A program for the processing and decomposition
of transient spectra

Michael P. Grubb,a) Andrew J. Orr-Ewing, and Michael N. R. Ashfold
School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom

(Received 31 March 2014; accepted 9 June 2014; published online 26 June 2014)

Extracting meaningful kinetic traces from time-resolved absorption spectra is a non-trivial task, par-
ticularly for solution phase spectra where solvent interactions can substantially broaden and shift the
transition frequencies. Typically, each spectrum is composed of signal from a number of molecular
species (e.g., excited states, intermediate complexes, product species) with overlapping spectral fea-
tures. Additionally, the profiles of these spectral features may evolve in time (i.e., signal nonlinearity),
further complicating the decomposition process. Here, we present a new program for decomposing
mixed transient spectra into their individual component spectra and extracting the corresponding
kinetic traces: KOALA (Kinetics Observed After Light Absorption). The software combines spec-
tral target analysis with brute-force linear least squares fitting, which is computationally efficient
because of the small nonlinear parameter space of most spectral features. Within, we demonstrate
the application of KOALA to two sets of experimental transient absorption spectra with multiple
mixed spectral components. Although designed for decomposing solution-phase transient absorption
data, KOALA may in principle be applied to any time-evolving spectra with multiple components.
© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4884516]

I. INTRODUCTION

A transient absorption experiment captures the time-
resolved dynamics of a chemical process from the time-
evolution of its absorption spectrum. Generally, a pump laser
pulse will be used to initiate the reaction (by breaking a chem-
ical bond or electronically exciting a molecule), and a sec-
ond broadband probe laser pulse is then used to measure a
change in the absorption spectrum of the system after an ad-
justable pump-probe time delay.1, 2 A typical transient absorp-
tion dataset might contain between 30 and 500 absorption
spectra at different pump-probe time-delays, and each spec-
trum may contain features from multiple chemical species:
ground and excited state reactants, reaction intermediates, sol-
vent complexes, product species and isomers, etc. The absorp-
tion signals from these different species will often be heavily
overlapped, and must first be separated from the combined to-
tal spectrum before the full story of the chemical process can
be discerned.

Separating mixed spectral signals is a general concern in
the fields of physical and analytical chemistry,3 and the prob-
lem is approached by two broad methodological categories:
target analysis and blind source separation. Target analysis de-
scribes techniques in which a spectral and/or kinetic model is
assumed and utilized to constrain the decomposition,4, 5 while
blind source separation aims to separate the spectral signal
based only on its time-variation in order to determine the
most strongly contributing components. Blind source separa-
tion is useful when no prior information is known about the
component spectra or reaction kinetics, and includes methods

a)Author to whom correspondence should be addressed. Electronic mail:
michael.grubb@bristol.ac.uk

such as Principal Component Analysis, Independent Com-
ponent Analysis,6 and Multivariate Curve Resolution.7 The
drawback of blind source separation methods is that the un-
derdetermined nature of the decomposition problem often re-
turns solutions that are mathematically or statistically optimal
but ultimately unphysical,8 although this is less true for ad-
vanced methods like Multivariate Curve Resolution.9 Addi-
tionally, all blind source separation techniques have difficulty
modeling nonlinearity in the signal such as the broadening or
shifting of the component spectra in time.

Spectral target analysis is a particularly suitable and eas-
ily implemented technique for the decomposition of transient
absorption spectra. For instance, the absorption spectrum of
a stable chemical species can be measured in isolation and
used as a basis function for modeling its contribution to the
transient spectrum. The other components can often be well-
modeled using simple Gaussian or Lorentzian profiles, which
can be given floating width and position parameters in order
to capture the time-dependent shifts due to vibrational cool-
ing or other solvent interactions. Target analysis does require
some manual oversight by the analyst, however, in order to en-
sure that the parameters of the spectral model are sufficiently
constrained to avoid over-fitting and to obtain physically
reasonable spectral profiles and kinetic traces. Data analy-
sis software that can facilitate the convenient testing of var-
ious spectral models and constraints, and provide simulta-
neous feedback of the resulting kinetic traces, is therefore
desirable.

Here, we present the KOALA (Kinetics Observed After
Light Absorption) software to allow the pre-processing, de-
composition, and subsequent kinetic trace analysis of tran-
sient absorption datasets. KOALA uses an inelegant brute-
force linear least squares algorithm to allow nonlinear fitting
of the spectra, which can counter-intuitively result in a faster

0034-6748/2014/85(6)/064104/7/$30.00 © 2014 AIP Publishing LLC85, 064104-1

Scientific
So�ware

Development:
A Pragmatic

Approach

Blaise Thompson

Introduction

File Format

Version Control

Modularity

Collaboration

Optimization

Publish

yaq

Publish

WrightTools: a Python package for multidimensional
spectroscopy
Blaise J. Thompson1, Kyle F. Sunden1, Darien J. Morrow1, Daniel D.
Kohler1, and John C. Wright1

1 University of Wisconsin–Madison

DOI: 10.21105/joss.01141

Software
• Review
• Repository
• Archive

Submitted: 16 December 2018
Published: 17 January 2019

License
Authors of papers retain copy-
right and release the work un-
der a Creative Commons Attri-
bution 4.0 International License
(CC-BY).

Introduction

“Multidimensional spectroscopy” (MDS) is a family of analytical techniques that record
the response of a material to multiple stimuli—typically multiple ultrafast pulses of light.
This approach has several unique capabilities;

• resolving congested states (Donaldson et al., 2008; W. Zhao & Wright, 1999),
• extracting spectra that would otherwise be selection-rule disallowed (Boyle, Neff-

Mallon, & Wright, 2013; Boyle, Neff-Mallon, Handali, & Wright, 2014),
• resolving fully coherent dynamics (Pakoulev et al., 2009),
• measuring coupling (Wright, 2011),
• and resolving ultrafast dynamics (Czech et al., 2015; Smallwood & Cundiff, 2018).

In our view, the most exciting aspect of these techniques is the vast number of different
approaches that scientists can take to learn about material quantum states. Often, a
number of these experiments can be accomplished with a single instrument. The diver-
sity of related-but-unique approaches to interrogating quantum systems is an important
strength of MDS.

Advancements in optics and laser science are bringing ultrafast multidimensional spec-
troscopy to more and more laboratories around the world. At the same time, increasing
automation and computer control are allowing traditionally “one-dimensional” spectro-
scopies to be recorded against other dimensions.

Due to its diversity and dimensionality, MDS data is challenging to process and visu-
alize. The tools that scientists develop to process one experiment may not work when
different experimental variables are explored. Historically, MDS practitioners have devel-
oped custom, one-off data processing workflows that need to be radically changed when
new experiments are undertaken. These changes take time to implement, and can be-
come annoyances or opportunities for error. Even worse, the challenge of designing a
new processing workflow may dissuade a scientist from creatively modifying their experi-
mental strategy, or comparing their data with data taken from another instrument. This
limit to creativity and flexibility defeats one of the main advantages of the MDS “family
approach”.

WrightTools is a new Python package that is made specifically for multidimensional
spectroscopy. It aims to be a core toolkit that is general enough to handle all MDS datasets
and processing workloads. Being built for and by MDS practitioners, WrightTools has
an intuitive, high-level, object-oriented interface for spectroscopists. To our knowledge,
WrightTools is the first MDS-focused toolkit to be freely avaliable and openly licensed.

Thompson et al., (2019). WrightTools: a Python package for multidimensional spectroscopy. Journal of Open Source Software, 4(33), 1141.
https://doi.org/10.21105/joss.01141

1

Scientific
So�ware

Development:
A Pragmatic

Approach

Blaise Thompson

Introduction

File Format

Version Control

Modularity

Collaboration

Optimization

Publish

yaq

Publish

LabView virtual instrument for automatic plasma diagnostic
J. Ballesteros,a) J. I. Fernández Palop, M. A. Hernández, R. Morales Crespo,
and S. Borrego del Pino
Departamento de Fı´sica, Campus Universitario de Rabanales, Edificio C2, Universidad de Co´rdoba,
14071 Co´rdoba, Spain

~Received 19 June 2003; accepted 27 October 2003!

This article presents a LabView virtual instrument~VI ! that automatically measures theI –V plasma
probe characteristic and obtains the electron energy distribution function~EEDF! in plasmas. The VI
determines several parameters characterizing the plasma using different methods to verify the
validity of the results. The program controls some parameters associated with color coded warnings
to verify the fidelity of the measured data and their later numerical treatment. The measurement
process and data treatment are very fast, about 0.5 s, so that temporal evolutions of the EEDF can
be scanned, to analyze the drift of the plasma. Finally, the program is easily portable since it is
developed in the LabView environment, so it can be adapted to any platform using common
laboratory instruments. ©2004 American Institute of Physics.@DOI: 10.1063/1.1634356#

I. INTRODUCTION

The plasma diagnostic techniques which use theI –V
characteristic of a Langmuir probe immersed in it, are classic
and broadly used. Applying the adequate technique for each
kind of plasma, local information about the parameters char-
acterizing the plasma can be obtained, e.g., the density and
temperature of the species composing it, the plasma poten-
tial, etc. There are multitudes of published works discussing
the Langmuir probe diagnostic methods; we point out a very
recent and complete revision from Demidovet al.1 More-
over, theI –V probe characteristic can be used to obtain the
electron energy distribution function~EEDF! in the plasma
by using Druyvestein’s formula:2

@ f E~E!#E52eVp
52

4

Spe2A2meVp

2e

d2I

dVp
2 , Vp<0, ~1!

f E(E) being the EEDF,Vp the probe biasing potential~re-
ferred to the plasma potential!, Sp the probe area,I the cur-
rent collected by the probe, ande andme the electron charge
and mass. The difficulty in applying this method is that a
second derivative of an experimental function has to be ac-
curately obtained. The noise implied in every measurement
process~due to the amplification of the sawtooth signal bi-
asing the probe or/and to the analog to digital conversion!,
and in a system inherently noisy as the plasma~due to insta-
bilities in the power supply generating the discharge!,3 is
amplified in the derivation process, and a smoothing process
is required. There are different methods for obtaining the
second derivative of theI –V characteristic.4–13 In particular,
the authors proposed in a previous paper a numerical method
to smooth theI –V characteristic,14 that has been quite
referenced.1,15–22 It consists of the iterative convolution of
the experimental data with the instrument function of the
measurement system, which is supposed to be Gaussian. The

whole process can be carried out in a single step by perform-
ing a convolution with the following function:14

gn~x!5 (
k51

n S n
kD ~21!k11

a

Apk
e2a2x2/k, ~2!

s51/a& being the standard deviation of the Gaussian dis-
tribution function andn the number of iterations.

Several advantages of this method were outlined:14 the
simplicity of the required measurement device~since only
the I –V characteristic has to be measured!, the measurement
process is very fast which avoids the probe contamination,
the probe can be cleaned before carrying out the measure-
ment, the degree of smoothing can be controlled, the mea-
sured and smoothed data can be compared, etc. As a disad-
vantage, the whole process does not finish with the
experimental measurement, since the data must be numeri-
cally treated later on to obtain the smoothedI –V character-
istic, the EEDF, and the other plasma parameters.

To implement the method described by Ferna´ndez Palop
et al.,14 this work describes the development of a virtual in-
strument~VI ! designed with the ease of use and portable
LabView environment,23 that automatically measures,
smooths, and plots theI –V characteristic, obtains the EEDF,
and operates with the data adequately to determine several
parameters characterizing the plasma~plasma potential,
Vplasma, floating potential,Vfloat, electron density and tem-
perature,ne and Te) by using different diagnostic methods,
to compare the results. Section II explains all these aspects.
The time spent in the whole process is less than 0.5 s, and so,
temporal evolutions of the EEDF can be measured to control
plasma drifts, as explained in Sec. II. To guarantee a correct
data treatment, the VI develops some controls of the quality
of the measurement process and of certain parameters that in
the previous paper were obtained later on. Therefore, the
usual fatal surprise of having to discard a bad measurement
when the experiment has finished or when the experimental
device has been disassembled is avoided, which in manya!Electronic mail: fa1bapaj@uco.es

REVIEW OF SCIENTIFIC INSTRUMENTS VOLUME 75, NUMBER 1 JANUARY 2004

900034-6748/2004/75(1)/90/4/$22.00 © 2004 American Institute of Physics

Scientific
So�ware

Development:
A Pragmatic

Approach

Blaise Thompson

Introduction

File Format

Version Control

Modularity

Collaboration

Optimization

Publish

yaq

Publish

.. if your code is good enough to do the
job, then it is good enough to release —
and releasing it will help your research
and your field.

 Nature.com
Discuss this article
online at.
go.nature.com/ed3hsl

Publish your computer
code: it is good enough
Freely provided working code — whatever its quality — improves programming
and enables others to engage with your research, says Nick Barnes.

I am a professional software engineer and I want to share a trade
secret with scientists: most professional computer software isn’t
very good. The code inside your laptop, television, phone or car is

often badly documented, inconsistent and poorly tested.
Why does this matter to science? Because to turn raw data into

published research papers often requires a little programming, which
means that most scientists write software. And you scientists generally
think the code you write is poor. It doesn’t contain good comments,
have sensible variable names or proper indentation. It breaks if you
introduce badly formatted data, and you need to edit the output by
hand to get the columns to line up. It includes a routine written by a
graduate student which you never completely understood, and so on.
Sound familiar? Well, those things don’t matter.

That the code is a little raw is one of the main reasons scientists give
for not sharing it with others. Yet, software in all
trades is written to be good enough for the job
intended. So if your code is good enough to do
the job, then it is good enough to release — and
releasing it will help your research and your field.
At the Climate Code Foundation, we encourage
scientists to publish their software. Our expe-
rience shows why this is important and how
researchers in all fields can benefit.

 Programs written by scientists may be small
scripts to draw charts and calculate correla-
tions, trends and significance, larger routines
to process and filter data in more complex ways,
or telemetry software to control or acquire data
from lab or field equipment. Often they are an
awkward mix of these different parts, glued
together with piecemeal scripts. What they
have in common is that, after a paper’s publica-
tion, they often languish in an obscure folder or are simply deleted.
Although the paper may include a brief mathematical description
of the processing algorithm, it is rare for science software to be
published or even reliably preserved.

Last year’s global fuss over the release of climate-science e-mails
from the University of East Anglia (UEA) in Norwich, UK,
highlighted the issue, and led the official inquiry to call for scientists
to publish code. My efforts pre-date the UEA incident and grew from
work in 2008 based on software used by NASA to report global tem-
peratures. Released on its website in 2007, the NASA code was messy
and proved difficult for critics to run on their own computers. Most
did not seem to try very hard, and nonsense was written about fraud
and conspiracy. With other volunteers, I rewrote
the software to make it easier for non-experts to
understand and run. All software has bugs, and
we found a number of minor problems, which
had no bearing on the results. NASA fixed

them and now intends to replace its original software with ours.
So, openness improved both the code used by the scientists and the

ability of the public to engage with their work. This is to be expected.
Other scientific methods improve through peer review. The open-
source movement has led to rapid improvements within the software
industry. But science source code, not exposed to scrutiny, cannot
benefit in this way.

No excuses
If scientists stand to gain, why do you not publish your code? I have
already discussed misplaced concern about quality. Here are my
responses to some other common excuses.

It is not common practice. As explained above, this must change in
climate science and should do so across all fields. Some disciplines,

such as bioinformatics, are already changing.
People will pick holes and demand support and

bug fixes. Publishing code may see you accused of
sloppiness. Not publishing can draw allegations
of fraud. Which is worse? Nobody is entitled to
demand technical support for freely provided
code: if the feedback is unhelpful, ignore it.

The code is valuable intellectual property that
belongs to my institution. Really, that little MAT-
LAB routine to calculate a two-part fit is worth
money? Frankly, I doubt it. Some code may have
long-term commercial potential, but almost all
the value lies in your expertise. My industry has
a name for code not backed by skilled experts:
abandonware. Institutions should support pub-
lishing; those who refuse are blocking progress.

It is too much work to polish the code. For
scientists, the word publication is totemic, and

signifies perfectionism. But your papers need not include meticulous
pages of Fortran; the original code can be published as supplementary
information, available from an institutional or journal website.

I accept that the necessary and inevitable change I call for cannot be
made by scientists alone. Governments, agencies and funding bodies
have all called for transparency. To make it happen, they have to be
prepared to make the necessary policy changes, and to pay for training,
workshops and initiatives. But the most important change must come
in the attitude of scientists. If you are still hesitant about releasing your
code, then ask yourself this question: does it perform the algorithm
you describe in your paper? If it does, your audience will accept it, and
maybe feel happier with its own efforts to write programs. If not, well,
you should fix that anyway. ■ See NewS Feature P. 775

Nick Barnes is director of the Climate Code Foundation,
Sheffield S17 4DL, UK.
e-mail: nb@climatecode.org

NoboDy is eNtitleD
to demaNd

techNical support
for freely

proviDeD coDe:
if the feeDback

is uNhelpful,
igNore it.

w
w
w
.s
er

en
a
at

k
in

s
.c
o
m

1 4 o c t o b e r 2 0 1 0 | V o L 4 6 7 | N A t U r e | 7 5 3

WorlD vieW A personal take on events

© 20 Macmillan Publishers Limited. All rights reserved10

Scientific
So�ware

Development:
A Pragmatic

Approach

Blaise Thompson

Introduction

File Format

Version Control

Modularity

Collaboration

Optimization

Publish

yaq

yaq

Scientific
So�ware

Development:
A Pragmatic

Approach

Blaise Thompson

Introduction

File Format

Version Control

Modularity

Collaboration

Optimization

Publish

yaq

yaq

Scientific
So�ware

Development:
A Pragmatic

Approach

Blaise Thompson

Introduction

File Format

Version Control

Modularity

Collaboration

Optimization

Publish

yaq

yaq

yaq daemons
I develop each daemon, client separately
I can be implemented in any language
I more reusable
I less fragile

Scientific
So�ware

Development:
A Pragmatic

Approach

Blaise Thompson

Introduction

File Format

Version Control

Modularity

Collaboration

Optimization

Publish

yaq

yaq

where possible, yaq a�empts to enforce consistency between di�erent interfaces

is-sensor
I measure
I get-measured
I stop-looping
I get-channel-names
I get-channel-shapes
I get-channel-units

has-position
I get-destination
I get-units
I get-position
I set-position
I set-relative

is-homeable
I home

Scientific
So�ware

Development:
A Pragmatic

Approach

Blaise Thompson

Introduction

File Format

Version Control

Modularity

Collaboration

Optimization

Publish

yaq

yaq

Tanner is building a continuous flow reactor to allow him to do kinetics studies on
novel polymer chemistries. He builds his reactor using a few commercial available
pumps, valves, and sensors which are “lying around the lab”. Tanner is currently
the only scientist working on this project, and the reactor is under heavy
development as he continues to refine his experimental procedures. Rather than
creating a monolithic graphical user interface, Tanner uses yaq to interface with
his hardware and writes simple ∼ 50 line Python scripts to drive his reactions. As
Tanner continues to change his reactor, he can easily make a new script that
ensures his valves and pumps fire in the appropriate pa�ern.

Scientific
So�ware

Development:
A Pragmatic

Approach

Blaise Thompson

Introduction

File Format

Version Control

Modularity

Collaboration

Optimization

Publish

yaq

yaq

Louis and Kurtis have been asked to build a pH-stat out of a pair of syringe pumps
and a pH meter. They would like to get the programming out of the way as
quickly as possible. Louis and Kurtis separately develop yaq daemons to interface
with the pH meter and syringe pumps respectively. With their daemons working
well, they meet back in the wetlab and quickly fine-tune a simple client.

Scientific
So�ware

Development:
A Pragmatic

Approach

Blaise Thompson

Introduction

File Format

Version Control

Modularity

Collaboration

Optimization

Publish

yaq

yaq

The Wright Group relies on the flexibility of their laser systems to accomplish a
wide variety of experimental procedures. Graduate students in this group
frequently find themselves switching out hardware on the laser table. Because
they use yaq to interface with their hardware, the Wright Group can write a
generic client which capitalizes on the shared traits system. As long as their client
is familiar with that particular “class” of hardware, Wright Group graduate
students can add and remove instrument components at will. The graduate
students find that they can run both of their laser tables using the same generic
client.

Scientific
So�ware

Development:
A Pragmatic

Approach

Blaise Thompson

Introduction

File Format

Version Control

Modularity

Collaboration

Optimization

Publish

yaq

yaq

Chase is building a pressurized reactor including a
custom isothermal block and sensors. This reactor
will be installed into a wetlab environment, so it’s
hard to find the place to put a computer, monitor,
keyboard, and mouse. Instead, Chase uses a
Rasperry Pi that’s connected to the network. He
implements his interfaces to the sensors and heaters
in yaq, and controls them remotely from a laptop on
the counter or from the comfort of his o�ice.

Scientific
So�ware

Development:
A Pragmatic

Approach

Blaise Thompson

Introduction

File Format

Version Control

Modularity

Collaboration

Optimization

Publish

yaq

Thank You

Thank you for your a�ention
... any questions?

Contact me:
I bthompson@chem.wisc.edu
I h�ps://shops.chem.wisc.edu
I h�ps://yaq.fyi
I h�ps://wright.tools

Dont forget: use version control today!

	Introduction
	File Format
	Version Control
	Modularity
	Collaboration
	Optimization
	Publish
	yaq

