Scientific Software Development:

A Pragmatic Approach

Blaise Thompson
University of Wisconsin-Madison

2020-05-07

UW-Madison Chemistry

Introduction

Chemistry at a glance:

:::m:mﬂi L "~ 50 Faculty

;T i:ﬂ!"“““',: i ~ 350 Grad. Students
et ‘/,/ w1~ 40 Postdocs
1;?_ il "~ 100 Staff

Chemistry Shops

Introduction MaChine E|eCtI‘0niCS

Introduction

Blaise Thompson

Who am I?
Ph.D. Analytical Chemist, 2018 (John C. Wright Group)
Currently: Instrumentation Technologist

design circuits, construct instruments
manage shop tools and inventory
advise and help researchers

software

No formal training in software development

Lover of the Python programming language

Introduction

Scientists use and develop software for many reasons
data processing
driving instrumentation

modeling

Scientific software projects have a range of scales
one-off script
small tool

large multi-year project

Scientific Software

Scientific Software

We are not software developers!
ot ... but somebody has to make the software ...

There are special challenges in scientific software development:

end-user developers'?3

1,2,4,5

shifting goals

maintenance*?

lack of testing®®

struggles with optimization®

1. Segal. “When Software Engineers Met Research Scientists: A Case Study”. In: Empirical Software Engineering 10.4 (Oct. 2005), pp. 517-536.
2. Hannay, MacLeod, Singer, Langtangen, Pfahl, Wilson. “How do scientists develop and use scientific software?” In: 2009 ICSE Workshop

3. Joppa, MclInerny, Harper, Salido, Takeda et al. “Troubling Trends in Scientific Software Use”. In: Science 340.6134 (May 2013), pp. 814-815.
4. Carver, Kendall, Squires, Post. “Software Development Environments...: A Series of Case Studies”. In: 2007 ICSE Workshop

5. Prabhu, Zhang, Ghosh, August, Huang et al. “A survey of the practice of computational science”. In: SC 11. ACM Press, 2011.

Scientific Software

FIOOOResearch FioooRsasch 205,200 Lot s 18 AY o
M) Check for pdt
OPINION ARTICLE
Rampant software errors may undermine scientific results
Introduction [version 2; peer review: 2 approved]

David A. W. Soergel'2

2Guront addross: Google, Inc. Mountain View, CA, USA

...software is profoundly brittle: “small”

bugs commonly have unbounded error LT
propagation. ...it is rare that a software

bug would alter a small proportion of the
data by a small amount. More likely, it
systematically alters every data point, or
occurs in some downstream aggregate
step with effectively global
consequences. In general, software B
errors produce outcomes that are s o

FI000Resoarch 2015, 3303

inaccurate, not merely imprecise.

Scientific Software

Introduction =

‘When Software Engineers Met Research Scientists:
A Case Study

"

Unlike traditional commercial software i
developers, but very much like
developers in open source projects or
startups, scientific programmers usually
don’t get their requirements from
customers, and their requirements are
rarely frozen. In fact, scientists often
can’t know what their programs should
do next until the current version has
produced some results.

Practices

@PLOS | s2i8ermo

Introduction

PERSPECTIVE

Good enough practices in scientific computing

Greg Wilson'®*, Jennifer Bryan®*, Karen Cranston®®, Justin Kitzes**, Lex Nederbragt®*,
Tracy K. Teal®®

1 Software Carpentry Foundation, Austin, Texas, United States of America, 2 RStudio and Department of
Statistics, University of British Columbia, Vancouver, British Columbia, Canada, 3 Department of Biology,
Duke University, Durham, North Carolina, United States of America, 4 Energy and Resources Group,
University of California, Berkeley, Berkeley, California, United States of America, 5 Centre for Ecological and
Evolutionary Synthesis, University of Oslo, Oslo, Norway, 6 Data Carpentry, Davis, California, United States
of America

© These authors contributed equally to this work.
* gvwilson @ software-carpentry.org

Author summary

Computers are now essential in all branches of science, but most researchers are never
taught the equivalent of basic lab skills for research computing. As a result, data can get
lost, analyses can take much longer than necessary, and researchers are limited in how
effectively they can work with software and data. Computing workflows need to follow

— the carme mrarcticroce ac 1ok mnraiecrte armd natehanle writh Aaraanired Aata darctirmonted ctone

File Format

Choose good file formats!

Start your project by designing your file formats.

data files
logs

configuration files

Use existing file formats where possible.
Prioritize human readability.

Include as much metadata as possible.

File Format

File Format

14# PyCMDS version: '0.8.0-development”’

2 # system name: 'ps’

3# file created: '2017-10-17T19:00:56.860000+06:00"
4 # data name: ‘diagwmHi’

5 # data info: v
6 # data origin: 'SCAN'

e [Fermed 7 # queue url: ‘https://drive.google.com/open?id=06zJTClorMBuwZWOIWTRGRDhtSGM'
8 # acquisition url: "https://drive.google.com/open?id=0BzJTClorMBuwWDhPSEp4QkodY2c'
94# scan url: ‘https://drive.google.com/open?id=0BzJTClorMBuwSENSaWd2TXExalE"
10 # axis names: ['wm' 'w2=wl']
11 # axis identities: ['wm' ‘w2=wl']
12 # axis units: ['wn' 'wn']
13 # axis interpolate: [False False]
14 # wm points: [20800. 20750. 20700. 20650. 20600. 20
15 # w2=wl points: [1720. 1715. 1710. 1705. 1700. 1695. 1690. 1685. 16
16 # constant names: ['w3']
17 # constant identities: ['wm-wl-w2']
18 # channel signed: [False False False False False False]
19 # PCI-6251 shots: 100
20 # kind: [None None None ‘hardware"’ 'hardware’ 'hardware’ ‘hardware’
21 # tolerance: [None None 0.01 1.0 1.0 1.0 1.0 1.0 1.0 1.0
22 # label: ['' v ‘lab’ 1t ‘Crystal’ "Amplifier’ ‘Grating' "ND

23 # units: [None None s ‘nm’ None None None None None None Non
24 # name: ['wm_index' 'w2=wl_index' ‘time' ‘wl® 'wl_Crystal’ ‘'wl_Amplifier' ‘'wl
25 0.000000 .000000 1508284863 .268000 5813.953488 -2.725045 .9
26 0.000000 .000000 1508284866.725000 5830.903790 -2.717545
27 0.000000 .000000 1508284870.068000 5847.953216 -2.710045
28 0.000000 .000000 1508284873.4576000 5865.102639 -2.702545
29 0.000000 .000000 1508284876 .803000 5882.352941 -2.695045
-y

BT .Ta . TCAOAOACON 11000 COonm —TACATC FOOMAC

s Wk = o
el R
DD WO W W

File Format

File Format

1 COLORS 16:29:11, Wed, Jan 17, 2018 COLORS is starting up

2 Delays_Status.vi 16:29:16, Wed, Jan 17, 2018 Communication with the Newport
delay controllers has been initialized on COM4. Delay commands will be issued through
the VISA resource: ASRL4::INSTR

3 Delays_Status.vi 16:29:19, Wed, Jan 17, 2018 Communication with the Thorlabs
delay controller (S/N: 45837036) has been initialized via USB. Delay commands will be
issued through ActiveX.

4 OPAs_Status.vi 16:29:23, Wed, Jan 17, 2018 OPAD was unsuccessfully loaded using
ERROR 6033 (TOPAS_OpenDevice.vi (0PA®; <UNDEFINED=>))

5 OPAs_Status.vi 16:29:23, Wed, Jan 17, 2018 OPAl was successfully loaded using C:-
\Users\John\Desktop\COLORS\OPAs\configuration\10743.1ini

6 OPAs_Status.vi 16:29:23, Wed, Jan 17, 2018 OPA2 was successfully loaded using C:-
\Users\John\Desktop\COLORS\OPAs\configuration\10742.ini

7 OPAs_Status.vi 16:29:23, Wed, Jan 17, 2018 OPA3 was unsuccessfully loaded using C:-
\Users\John\Desktop\COLORS\OPAs\configuration\OPA3.ini: ERROR 6814 (TOPAS_OpenDevice.vi
(0PA3; C:\Users\John\Desktop\COLORS\OPAs\configuration\0OPA3.ini))

8 Delays_Status.vi 16:29:24, Wed, Jan 17, 2018 D1 has been sent to zero

9 Filter wheels_Status.vi 16:29:24, Wed, Jan 17, 2818 Communication with the
filter wheel controller has been initialized on COM18. Filter wheel commands will be
issued through the VISA resource: ASRL18::TNSTR

10 Delays_Status.vi 16:29:27, Wed, Jan 17, 2018 D2 has been sent to zero

11 Delays_Status.vi 16:29:27, Wed, Jan 17, 2018 Dref has been sent home

12 Delay StateCheck (NP).vi 16:29:27, Wed, Jan 17, 2018 ERROR 7750 in
Delay_StateCheck (NP).vi (D1) [delta=21.831800 mm] State: READY from MOVING

13 TOPAS CalibrateMotor.vi 16:29:30, Wed, Jan 17, 2018 OPAl motor® calibration
commencing!

14 TOPAS CalibrateMotor.vi 16:29:34, Wed, Jan 17, 2018 OPAl motorl calibration
commencing!

15 Delay StateCheck (NP).vi 16:29:35, Wed, Jan 17, 2018 ERROR 7750 in

M T e O et ol el TR s IRTY T doT e A A1CEODA 1 Cdrd . DPEARY € e MOALITRIS

File Format

File Format

File format tips!
Storing very complex multidimensional data? Consider HDF5.
Tab characters work best as delimiters.
TOML and INI are cool.

Version Control

Use version control! (probably git)

Software developers use version control to
keep track of all of their code changes.

Using version control, you can always return to
an earlier version—nothing is lost.

In many cases, the version control system is
also the source code backup.

Version Control

“FINAL doc

CENAL.doc!

i - v
l .6.COMMENTS. d: FINAL_rev.8.commenteS.
FINAL _rev.6.COMMENTS. doc R agnomen

AORGE CWAMD2012

WWW. PHDCOMICS. COM

“Not Final” by Jorge Cham - www . phdcomics.com

www.phdcomics.com

Version Control

°
0 glt Git is the ubiquitous version control system.

) everything is local
https://git-scm.com/

Version Control

track arbitrary files and folders
several server options available
backup
]
GitHub sharing
can be private if desired

https://github.com/
If you do decide to share your code with the

world, please consider licensing it.

"’(ﬂtLab shops.chem.wisc.edu/training/

https://gitlab.com/

https://git-scm.com/
https://github.com/
https://gitlab.com/
shops.chem.wisc.edu/training/

Version Control

Katie uses Gaussian computational software in her research. She is exploring a
Version Control large range of initial conditions using a grid search strategy. Katie uses Git to
manage a collection of three or four scripts that she uses to run her simulations
and process resulting data. Katie uses the departmental GitLab instance to store
her scripts in a private repository. Even though she is the only student working on
the project right now, Katie benefits from the version control and backup features
as she continues to tweak her script. Katie appreciates the assurance that she can
always go back to an earlier version.

Version Control

Louis uses several custom instruments in his daily i

research. Each of these is a typical analytical/physical V "

chemistry instrument with many components and a large c13 c11

LabVIEW software stack originally written by a v Y
Version Control long-since-graduated student. Many people rely on these c12 c8

instruments, so it is crucial that their functionality is not \ Y

interrupted even as Louis improves the software. Louis &L e

uses Git to store working versions of the existing \ v

LabVIEW code. He then feels confident that he can make ¢ “

edits and improvements without “losing” the old c'3 C'Z

functionality. While he irons out bugs, Louis makes sure

that he reverts to the original code so that other users are c'1 -

not interrupted. Louis backs-up the LabVIEW software ;

on the departmental GitLab instance, using a “Group” to T

ensure that his labmates and advisor also have access.
Image adapted from “Pro Git” by Scott Chacon and Ben Straub

Version Control

The Wright Group’s research requires them to process large, complex, &
multidimensional datasets. In pursuit of this goal, several graduate students spend
a significant amount of their time developing a custom data processing library in
Python. Due to the scale of this development effort and the number of graduate
students working simultaneously on the project, the Wright Group decides to use
a branching and pull request workflow to help everyone collaborate. The Wright
Group decides to host their code on GitHub, making it publicly available in the
hope that other scientists might benefit from and contribute to the library.

Version Control

Modularity

Where possible, try to keep software projects small and single purpose.

Modularity

Focus on interoperability.
import your other packages

shared file formats

Modularity

Wright Group Software Ecosystem

MODELING

,

(WrightSim

DATA PROCESSING

WrightTools)
NP

—

DATA ACQUISITION

Modularity

Software projects can be “finished”.

60

Modularity

40

Modularity

To help keep different modules interoperable, use tests.

Modularity

Try to write many small tests that can be run automatically
when you add a feature
when you find a bug

Git servers like GitLab and GitHub can automatically run tests for you!

Collaboration

Start by looking for existing projects.

Collaboration

Familiarize yourself with the ecosystem before jumping in.

Don’t “reinvent the wheel”.

Collaboration

data processing

yt

sunpy
nmrglue
KOALA

PyTA
scikit.ultrafast
spc

sncosmo

scikit-beam

data acquisition

Exopy

bluesky
Instrbuilder
Lantz

Qudi
storm-control
SFGacquisition
thorpy
PyDAQmx

Collaboration

simulation
COSMOSS
AutoGAMESS
pymatgen
KinetiKit
CP2K
GoodVibes
cctbx
ChemPy
phonopy

What if existing projects don’t work for you?

Collaboration

Work within small groups
find common repetitive tasks
try to “divide and conquer” and share code

use code review

Collaboration

Optimization

Optimization

Optimization (making software faster) matters, but avoid premature optimization.

Don’t get pulled into the trap of trying to make things perfect the first time.
Software design is typically a very iterative process, and for good reason. This is
particularly true in a scientific context, where goals may evolve during the
development process. Write for correctness first, and if it works and is proven
useful, consider optimization.

Never optimize blindly—use profiling tools.

Optimization

PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018) 7

WrightSim: Using PyCUDA to Simulate
Multidimensional Spectra

, Blaise J Thompson¥, John C Wright*

Optimization

Abstract- i idi i spectroscopy (MDS) is a powerful ex-
perimental technique used to interrogate complex chemical systems. MDS
promises to reveal energetics, dynamics, and coupling features of and between
the many quantum-mechanical states that these systems contain. In practice,

simulation is typically required to connect measured MDS spectra with these Lo
microscopic physical phenomena. We present an open-source Python package, 600 09
WrightSim, designed to simulate MDS. Numerical integration is used to
evolve the system as it interacts with several electric fields in the course of a 200 08
multidimensional experiment. This numerical approach allows Wright Sim to
fully account for finite pulse effects that are commonly ignored. WrightSim 07
is made up of modules that can be exchanged to accommodate many different 200 06
experimental setups. Simulations are defined through a Python interface that is §
designed to be intuitive for experimentalists and theorists alike. We report sev- g o 0.5 #a
eral algorithmic improvements that make Wright Sim faster than previous im- £
We the effect of the simulation hoth B 04 ®

Optimization

NISE_run_for_kyle.py:66(run_if_not_exists)
95 s

evolve.py:15(rk)
292 s

Optimization evolve.py:15(rk) index_tricks.py:26(ix_)
292 s 835s

<9~

Optimization

target.py:4(<module>)
376s

_scan.py:90(run)
37.2s

Optimization

£

W

N

Publish

Publish your scientific software!

Receive academic credit for your work.

Communicate about your software to other scientists.
Publish Provide a citation target.

Increase reproducability and decrease effort in your community.

)

Publish

Distribute your code using standard package managers
Python Package Index “PyPI”
MATLAB File Exchange
The Comprehensive R Archive Network “CRAN”
VI Package Manager “VIPM”

Anaconda (multilingual)

Publish

)

Publish

Many Journals:
Journal of Open Source Software

Jounral of Open Research Software

HardwareX
SoftwareX

Publish

Review of Scientific Instruments

)

Publish

CrossMark
REVIEW OF SCIENTIFIC INSTRUMENTS 85, 064104 (2014) @ «

KOALA: A program for the processing and decomposition
of transient spectra

Michael P. Grubb,® Andrew J. Orr-Ewing, and Michael N. R. Ashfold
School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 ITS, United Kingdom

(Received 31 March 2014; accepted 9 June 2014; published online 26 June 2014)

Extracting meaningful kinetic traces from time-resolved absorption spectra is a non-trivial task, par-
ticularly for solution phase spectra where solvent interactions can substantially broaden and shift the
transition frequencies. Typically, each spectrum is composed of signal from a number of molecular
species (e.g., excited states, intermediate complexes, product species) with overlapping spectral fea-
Publish tures. Additionally, the profiles of these spectral features may evolve in time (i.e., signal nonlinearity),
further complicating the decomposition process. Here, we present a new program for decomposing
mixed transient spectra into their individual component spectra and extracting the corresponding
kinetic traces: KOALA (Kinetics Observed After Light Absorption). The software combines spec-
tral target analysis with brute-force linear least squares fitting, which is computationally efficient
because of the small nonlinear parameter space of most spectral features. Within, we demonstrate
the application of KOALA to two sets of experimental transient absorption spectra with multiple
mixed spectral components. Although designed for decomposing solution-phase transient absorption
data, KOALA may in principle be applied to any time-evolving spectra with multiple components.
© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4884516]

I. INTRODUCTION such as Principal Component Analysis, Independent Com-
ponent Analysis,® and Multivariate Curve Resolution.” The
drawback of blind source separation methods is that the un-
derdetermined nature of the decomposition problem often re-

A transient absorption experiment captures the time-
resolved dynamics of a chemical process from the time-
avnlntinn af ite ahearntion enactrnim (Canarally 9 niimn lacar

Publish

The Journal of Open Source Software

WrightTools: a Python package for multidimensional
spectroscopy

Publish

Blaise J. Thompson!, Kyle F. Sunden!, Darien J. Morrow', Daniel D.
Kohler!, and John C. Wright!

1 University of Wisconsin—-Madison

DOI: 10.21105/joss.01141
Software

* Revieww Introduction
= Repository &
= Archive 7
“Multidimensional spectroscopy” (MDS) is a family of analytical techniques that record
Submitted: 16 December 2018 the response of a material to multiple stimuli—typically multiple ultrafast pulses of light.
Published: 17 January 2019 This approach has several unique capabilities;

Publish

Publish

HTML AESTRACT + LINKS

REVIEW OF SCIENTIFIC INSTRUMENTS VOLUME 75, NUMBER 1 JANUARY 2004

LabView virtual instrument for automatic plasma diagnostic

J. Ballesteros,® J. I. Fernandez Palop, M. A. Hernandez, R. Morales Crespo,

and S. Borrego del Pino

Departamento de Bica, Campus Universitario de Rabanales, Edificio C2, Universidad dddba,
14071 Cadoba, Spain

(Received 19 June 2003; accepted 27 October 2003

This article presents a LabView virtual instrumé¥it) that automatically measures theV plasma

probe characteristic and obtains the electron energy distribution fur(&tebF) in plasmas. The VI
determines several parameters characterizing the plasma using different methods to verify the
validity of the results. The program controls some parameters associated with color coded warnings
to verify the fidelity of the measured data and their later numerical treatment. The measurement
process and data treatment are very fast, about 0.5 s, so that temporal evolutions of the EEDF can
be scanned, to analyze the drift of the plasma. Finally, the program is easily portable since it is
developed in the LabView environment, so it can be adapted to any platform using common
laboratory instruments. @004 American Institute of Physic§DOI: 10.1063/1.1634356

1. INTRODUCTION whole process can be carried out in a single step by perform-

.))) ing a convolution with the following functiof*
The plasma diagnostic techniques which use Ithy/

characteristic of a Langmuir probe immersed in it, are classic " in « -

and broadly used. Applying the adequate technique for each gn(x)= >, (k](—l)k*l?e"Y Xk, (2
kind of plasma, local information about the parameters char- k=1 A vk

acterizing the plasma can be obtained, e.g., the density and
temperature of the species composing it, the plasma poteﬁrf 1/av2 being the standard deviation of the Gaussian dis-

trikhiitinn fiinetinn anch the ntimhbhar Af itaratinne

if your code is good enough to do the
job, then it is good enough to release —
and releasing it will help your research
and your field.

Publish

ORLD VIEW..........

Publish your computer
A code: it is good enough

— Freely provided working code

‘Whateverits quality — improves programming

and enables others to engage with your research, says Nick Barnes.

“am a professional software engineer and I want to share a rade
et with cenists: most professonal computer softare s

them and now intends to replace s original software with ours.

very goo: caris

often badly documented, inconsistent and. pmh tested.
‘Why does this matter to science? Because to turn raw data into
which

Other scientific methods improve through peer review. The open-

industry . cannot

hink th code ou i poo. [docsic contan good urmmu\l)
i cak

proper
ormaned s i you need

iy doyou ot publsh yourcode have

hand line up. It includes already discussed mispl. quality. Here are my
graduate student which you never completely understood, andsoon. | responses P o
Sound failiar Welthose things don mate. 2 explained ab b

T ¢ climate science and I ield:

(ot ot hering ot b Yo st
trades is written to be good enough for the job.
inended.Soif o codeis good crongh o do
thejb thenit s god envgh

to publish their softw:
Tienceshaws why thi b+ Importantand b

such asbioinformatics,arealready

anging

People will ick holes and demand support and

bugfixes Publishing code may seeyouaceused of

NOBODY ISENTITLED sioppiness Notpubiishing an drawallcgsions

titled to

et Whitoworse ebody
D onded

demand technical support for fre

TECHNICAL SUPPORT <3 s it ropry

e nal fddscanbeet. - FOR FREELY orgtomy sttt Resly m\i\lulxk\H‘lh
crpest dem charts and coculn corela PROVIDED CODE: money? Franky | doubt i Some code mayhave

Tormsrvod s, arger onkines |F THE FEEDBACK long-term commercal potental, but lmostall

the value lies in your expertise. My industry has.

ok it sl IS UNHELPFUL, a name for code not backed by skilled experts:

or telemery software to control or acquire data.

fromab or field equipment. Often they are an IGNOREIT. abandonware. Institutions should support pub.
. lishin

g those o e s ockingprogress.
o much work to polish the code. For
scientists nhmmwm.unm.um\m and

Butyour 1

tion,

Although the pay o miode b e
of the processing

ublishedorcven elsbly prsered

Igorithm, it i rare for science software to be

information, available from an institutional or journal website.
Tacceptthat the necessary and incvitable change call or canot be

made by sientists al enments,sgencies and funding bodics

Angli haveall called or tra ey To make it happen, they have to be
ighiightedth sue m.m.mmm.m.,mnummmMM andtopa &
to publish code. grewfrom | workshopsand . mostimm
workin 2 inthe Ifyouarestill
peratures Released on ts website in 2007, the N ASA codewas messy

code, then ask yourselfthis question: does it perform the algorithm
pap doe: entt.and

Most

if

Sl Provec CRIIenT or T srrerd

yaq

uS® LIGHT SOURCE

U

— R 32

32
—— _7 MOTOR
%3
—— HEATER
K

——SENSOR

1% DAEMON B |

CLIENT |
| 75 DAEMONC

__

USB

RS232

12C

yaq

LIGHT SOURCE

MOTOR

HEATER

SENSOR

yaq

yaq daemons
develop each daemon, client separately
can be implemented in any language
more reusable

less fragile

yaq

where possible, yaq attempts to enforce consistency between different interfaces

is-sensor
has-position
measure
get-destination
get-measured
stop-looping get-units is-homeable
get-position home

get-channel-names
set-position
get-channel-shapes P

. set-relative
get-channel-units

yaq

Tanner is building a continuous flow reactor to allow him to do kinetics studies on
novel polymer chemistries. He builds his reactor using a few commercial available
pumps, valves, and sensors which are “lying around the lab”. Tanner is currently
the only scientist working on this project, and the reactor is under heavy
development as he continues to refine his experimental procedures. Rather than
creating a monolithic graphical user interface, Tanner uses yaq to interface with
his hardware and writes simple ~ 50 line Python scripts to drive his reactions. As
Tanner continues to change his reactor, he can easily make a new script that
ensures his valves and pumps fire in the appropriate pattern.

yaq

Louis and Kurtis have been asked to build a pH-stat out of a pair of syringe pumps
and a pH meter. They would like to get the programming out of the way as
quickly as possible. Louis and Kurtis separately develop yaq daemons to interface
with the pH meter and syringe pumps respectively. With their daemons working
well, they meet back in the wetlab and quickly fine-tune a simple client.

yaq

The Wright Group relies on the flexibility of their laser systems to accomplish a
wide variety of experimental procedures. Graduate students in this group
frequently find themselves switching out hardware on the laser table. Because
they use yagq to interface with their hardware, the Wright Group can write a
generic client which capitalizes on the shared traits system. As long as their client
is familiar with that particular “class” of hardware, Wright Group graduate
students can add and remove instrument components at will. The graduate
students find that they can run both of their laser tables using the same generic
client.

Chase is building a pressurized reactor including a
custom isothermal block and sensors. This reactor
will be installed into a wetlab environment, so it’s
hard to find the place to put a computer, monitor,
keyboard, and mouse. Instead, Chase uses a
Rasperry Pi that’s connected to the network. He
implements his interfaces to the sensors and heaters
in yaq, and controls them fremotely from a laptop on
the counter or from the comfort of his office.

Thank You

Thank you for your attention
... any questions?

Contact me:
bthompson@chem.wisc.edu
https://shops.chem.wisc.edu
https://yaq.fyi
https://wright.tools

Dont forget: use version control today!

	Introduction
	File Format
	Version Control
	Modularity
	Collaboration
	Optimization
	Publish
	yaq

